The excitation, propagation and dissipation of waves in accretion discs: the non-linear axisymmetric case
نویسندگان
چکیده
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic (γ = 5/3). Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance Mr ∼ 0.01 undergo shocks within a distance of order the resonance radius.
منابع مشابه
Tidally distorted accretion discs in binary stars
The non-axisymmetric features observed in the discs of dwarf novae in outburst are usually considered to be spiral shocks, which are the non-linear relatives of tidally excited waves. This interpretation suffers from a number of problems. For example, the natural site of wave excitation lies outside the Roche lobe, the disc must be especially hot, and most treatments of wave propagation do not ...
متن کاملWave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathemat...
متن کاملImplication of Quantum Effects on Non-Linear Propagation of Electron Plasma Solitons
We have studied the electron exchange-correlation effect on thecharacteristics of the two-component unmagnetized dense quantum plasma withstreaming motion. For this purpose, we have used the quantum hydrodynamic model(including the effects of a quantum statistical Fermi electron temperature) for studyingthe propagation of an electrostatic electron plasma waves in such th...
متن کاملThe excitation of inertial-acoustic waves through turbulent fluctuations in accretion discs II: Numerical Simulations with MRI driven turbulence
We present fully three-dimensional local simulations of compressible MRI turbulence with the object of studying and elucidating the excitation of the non-axisymmetric inertial acoustic waves that are observed to always be present. They are potentially important for affecting protoplanetary migration through the action of associated stochastic gravitational forces and producing residual transpor...
متن کاملUltrasonic guided waves reflection from simple dent in pipe for defect rate estimation and parameters determination of axisymmetric wave generation source
In this paper, the reflection of ultrasonic guided waves from simple dent in pipes has been investigated using finite element method and the relationship between reflection coefficient of these waves and deformation rate has been determined. Also, the effect of the parameters of wave generation source on the generated wave field has been investigated using normal modes expansion method. At firs...
متن کامل